The Crystal Structure of Tetranitratobis(triphenylphosphine oxide)thorium(IV)

By K. M. A. Malik and J.W. Jeffery
Department of Crystallography, Birkbeck College, Malet Street, London, W.C.1, England

(Received 28 March 1973; accepted 21 June 1973)

Abstract

The crystal structure has been determined from three-dimensional X-ray data collected by photographic methods. The crystals are monoclinic, with unit-cell dimensions $a=14.081$ (5), $b=17.590$ (5), $c=$ 16.567 (5) $\AA, \beta=91 \cdot 02(10)^{\circ}$; the space group is $P 2_{1} / n$ and $Z=4$. The structure was solved by Patterson and Fourier methods, and refined by the least-squares method on the basis of 3933 independent observations. The final value of conventional R is $0 \cdot 1009$. The thorium atom has a coordination number of ten involving eight oxygen atoms from four bidentate nitrate groups and two oxygen atoms from the Th-O-P linkages as immediate neighbours. The triphenylphosphine groups are linked with thorium through Th-O-P linkages and are related by an approximate twofold axis of symmetry passing through the thorium atom. The phosphorus atoms have irregular tetrahedral coordination with average P-C bond length $=1.80$ (3) and $\mathrm{P}-\mathrm{O}=1.45$ (2) \AA. The phenyl rings are planar with average $\mathrm{C}-\mathrm{C}$ distance $=1.40$ (6) \AA. The Th-O(bridging) distances, 2.37 (2) and 2.33 (2) \AA, are shorter than the $\mathrm{Th}-\mathrm{O}$ (nitrate) distances, 2.52 (2) to 2.58 (2) \AA. The nitrate groups are planar with average $\mathrm{N}-\mathrm{O}$ distance $=1.24$ (6) \AA.

Introduction

Lea (1968) and Mackay made preliminary X-ray investigations of tetranitratobis(triphenylphosphine oxide)thorium(IV), and collected intensity data out to $\theta=20^{\circ}$ for Mo $K \alpha$ radiation on a 4-circle diffractometer as a development project. Although the approximate position of the thorium atom and some indications of the rest of the structure were correctly obtained from these data, refinement could not be achieved and comparison of $\left|F_{o}\right|$ and $\left|F_{c}\right|$ showed that there must be gross errors in the data, probably due to movement of the crystal in its mount leading to incorrect setting and possibly incorrect indexing in some cases. The existence of these errors was subsequently confirmed when photographic data were obtained. It is of interest that so much information could be extracted from data with $(\sin \theta) / \lambda<0 \cdot 5$, part of which was grossly in error. However, since the extent of the errors was unknown at the time, the structure determination was started again without reference to the previous work.

Experimental

A single crystal shaped to a sphere (diameter, 0.214 mm) and mounted about the a axis was obtained from Dr A. L. Mackay. The crystal was grown by Smith \& Wassef (1968).

Crystal data

Tetranitratobis(triphenylphosphine oxide)thorium(IV), $\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{4}\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{PO}\right]_{2}$, F.W. 1036.6. Monoclinic, $a=14.081$ (5), $b=17.590$ (5), $c=16.567$ (5) $\AA, \quad \beta=$ $91.02(10)^{\circ}$; space group, $P 2_{\mathrm{I}} / n . V=4103 \AA^{3} ; D_{m}=$ $1.655 \mathrm{~g} \mathrm{~cm}^{-3} ; D_{c}=1.679 \mathrm{~g} \mathrm{~cm}^{-3} ; Z=4 ; F(000)=2024$; linear absorption coefficient $=164.2 \mathrm{~cm}^{-1}(\lambda=1.542 \AA)$.

The crystal data given above are those obtained by

Lea (1968). With the exception of D_{m}, they were all redetermined in the present work and agreement obtained within the limits of error.

The intensities ($0 k l-7 k l$) were collected on nonintegrating Weissenberg photographs with the multiple film technique and $\mathrm{Cu} K \alpha$ radiation. The intensities were estimated visually. Approximate spot-shape corrections were applied on the low-angle, upper-level reflexions by multiplying the observed intensity of a particular spot by the ratio of its length to that of the spot on the intensity scale. The film correlation factors were determined by using a program based on the method of Hamilton, Rollett \& Sparks (1965). The raw intensities were corrected for Lorentz, polarization and absorption effects to give 3933 unique reflexions including about 500 'unobserveds' (given a value of half the minimum observable intensity).

Structure determination

The Th atom was located from a three-dimensional Patterson synthesis. A three-dimensional density map computed with the Th phases revealed the Th-O-P linkages. A second electron density map computed with the phases obtained from the Th and P positions and weighted $\left|F_{o}\right|$ values revealed all the 57 non-hydrogen atoms in the structure. The weights were calculated from the relation, $w=\tanh \left(2\left|F_{o}\right|\left|F_{c}\right| / \sum_{i} n_{i} f_{i}^{2}\right)$, where n_{i} is the number of atoms with scattering power f_{i} in the unit cell not included in $\left|F_{c}\right|$.

The structure was refined by the method of least squares. The quantity minimized was $\sum w\left(\left|F_{o}\right|-G\left|F_{c}\right|\right)^{2}$. The weights were calculated from the relation, $w=$ $1 /\left(60+\left|F_{o}\right|+0 \cdot 0055\left|F_{o}\right|^{2}\right)$ and gave reasonably constant averages of $w \Delta F^{2}$ with $\left|F_{o}\right|$ and $(\sin \theta) / \lambda$ at the end of refinement. In a given cycle of refinement, the positional
and thermal parameters of only a selected number of atoms and the eight scale factors were varied, the rest of the structure being treated as 'fixed' atom contributors. The refinement, with Th and P atoms anisotropic and including full corrections for anomalous dispersion (Δf^{\prime} and $\Delta f^{\prime \prime}$) for these two atom types (International Tables for X-ray Crystallography, 1962),

Table 1. Fractional co-ordinates with e.s.d.'s $\left(\times 10^{5}\right)$ of all the non-hydrogen atoms in one molecule

	x	y	z
Th	0.02110 (8)	5563 (4)	39 (4)
$\mathrm{P}(1)$	$0 \cdot 2 \times 209$ (62)	$0 \cdot 18498$ (36)	$0 \cdot 24856$ (33)
P (2)	-0.22615 (59)	$0 \cdot 10142$ (32)	$0 \cdot 26290$ (35)
$\mathrm{O}(1)$	$0 \cdot 18668$ (176)	$0 \cdot 16829$ (91)	$0 \cdot 22281$ (104)
$\mathrm{O}(2)$	-0.13351 (147)	$0 \cdot 12097$ (84)	$0 \cdot 22868$ (91)
$\mathrm{N}(1)$	-0.04023 (248)	$0 \cdot 27200$ (140)	0.08153 (159)
$\mathrm{O}(11)$	-0.04794 (190)	$0 \cdot 32501$ (129)	0.03303 (137)
$\mathrm{O}(12)$	-0.09171 (163)	$0 \cdot 24947$ (103)	$0 \cdot 12954$ (114)
O (13)	0.05032 (166)	$0 \cdot 24819$ (90)	0.08276 (93)
N (2)	0.05457 (215)	$0 \cdot 08819$ (105)	0.04358 (128)
$\mathrm{O}(21)$	0.05210 (152)	0.06314 (99)	-0.02731 (105)
O (22)	0.11826 (163)	0.08772 (94)	0.08929 (109)
$\mathrm{O}(23)$	-0.03719 (164)	0.09763 (85)	0.06569 (93)
N(3)	0.02189 (204)	$0 \cdot 28113$ (123)	$0 \cdot 30827$ (135)
$\mathrm{O}(31)$	0.02623 (228)	0.33507 (144)	$0 \cdot 36330$ (168)
$\mathrm{O}(32)$	-0.01042 (154)	$0 \cdot 21969$ (101)	$0 \cdot 33254$ (111)
O(33)	0.05004 (166)	$0 \cdot 29406$ (107)	$0 \cdot 24351$ (123)
N(4)	0.04425 (180)	$0 \cdot 00864$ (116)	$0 \cdot 28548$ (124)
$\mathrm{O}(41)$	0.04904 (196)	-0.05276 (141)	$0 \cdot 31878$ (147)
$\mathrm{O}(42)$	0.05696 (137)	0.06946 (87)	$0 \cdot 31925$ (91)
$\mathrm{O}(43)$	0.02565 (136)	$0 \cdot 01279$ (93)	$0 \cdot 21126$ (97)
C(111)	$0 \cdot 33026$ (203)	0.09422 (120)	$0 \cdot 28452$ (131)
$\mathrm{C}(112)$	$0 \cdot 31425$ (237)	0.02977 (146)	$0 \cdot 24430$ (157)
(113)	$0 \cdot 35257$ (309)	-0.03544 (206)	$0 \cdot 26830$ (228)
C(114)	$0 \cdot 41303$ (331)	-0.03336 (227)	$0 \cdot 34279$ (255)
C(115)	0.43597 (269)	0.03544 (178)	$0 \cdot 37794$ (184)
C(116)	0.39443 (222)	$0 \cdot 10134$ (136)	0.34716 (149)
C(121)	$0 \cdot 28361$ (183)	$0 \cdot 25343$ (104)	$0 \cdot 32636$ (114)
$\mathrm{C}(122)$	0.33239 (248)	$0 \cdot 32132$ (158)	0.31632 (166)
C(123)	$0 \cdot 33386$ (242)	$0 \cdot 37557$ (156)	$0 \cdot 37668$ (168)
C(124)	$0 \cdot 28889$ (260)	0.36163 (163)	$0 \cdot 45070$ (177)
C(125)	$0 \cdot 23479$ (271)	$0 \cdot 29468$ (178)	$0 \cdot 46119$ (184)
C(126)	0.23222 (242)	$0 \cdot 24106$ (158)	0.39813 (170)
C(131)	0.34933 (273)	$0 \cdot 21179$ (137)	$0 \cdot 16200$ (154)
C(132)	0.44914 (369)	$0 \cdot 22323$ (199)	$0 \cdot 17049$ (227)
C(133)	0.50692 (399)	0.24387 (276)	$0 \cdot 10544$ (341)
C(134)	0.45236 (453)	$0 \cdot 25193$ (240)	0.03328 (274)
C(135)	0.36524 (401)	$0 \cdot 25529$ (204)	0.01903 (225)
C(136)	$0 \cdot 30360$ (302)	$0 \cdot 23394$ (206)	0.08904 (228)
C(211)	-0.29466 (236)	$0 \cdot 18464$ (151)	$0 \cdot 29012$ (159)
C(212)	-0.28352 (229)	0.23938 (152)	$0 \cdot 23743$ (155)
C(213)	-0.32869 (295)	$0 \cdot 31475$ (196)	$0 \cdot 25166$ (211)
C(214)	-0.38740 (226)	$0 \cdot 31835$ (136)	$0 \cdot 32170$ (151)
C(215)	-0.39698 (201)	$0 \cdot 26206$ (120)	$0 \cdot 37283$ (128)
C(216)	-0.36357 (286)	$0 \cdot 19472$ (203)	$0 \cdot 35969$ (205)
C(221)	-0.21552 (205)	0.04455 (118)	$0 \cdot 34962$ (127)
$\mathrm{C}(222)$	-0.27838 (234)	-0.02167 (150)	$0 \cdot 36195$ (162)
C(223)	-0.25788 (333)	-0.06491 (225)	0.43461 (249)
C(224)	-0.19215 (323)	-0.03534 (209)	$0 \cdot 48852$ (231)
C(225)	-0.13751 (292)	0.03183 (186)	$0 \cdot 47870$ (198)
C(226)	-0.14971 (237)	0.06713 (148)	$0 \cdot 40610$ (161)
C(231)	-0.29810 (297)	0.04812 (142)	$0 \cdot 19038$ (150)
C(232)	-0.39210 (426)	0.05299 (238)	$0 \cdot 18657$ (245)
C(233)	-0.43646 (343)	0.01301 (239)	$0 \cdot 12628$ (261)
C(234)	-0.38661 (314)	-0.04074 (157)	0.07425 (176)
C(235)	-0.28524 (319)	-0.03750 (157)	0.07430 (179)
C(236)	-0.23684 (225)	$0 \cdot 00268$ (139)	$0 \cdot 13487$ (152)

Table 2. Thermal parameters $\left(\times 10^{3}\right)$, anisotropic for Th and P atoms and isotropic for all other non-hydrogen atoms
E.s.d.'s are given in parentheses. The anisotropic temperature factor has the form,

$\begin{aligned} & T=\exp \left[-2 \pi^{2}\left(h^{2} a^{* 2} U_{11}+k^{2} b^{* 2} U_{22}+l^{2} c^{* 2} U_{33}+2 h k a^{*} b^{*} U_{12}\right.\right. \\ &\left.\left.+2 k l b^{*} c^{*} U_{23}+2 l h c^{*} a^{*} U_{31}\right)\right] . \end{aligned}$					
	U_{11}	U_{22}	$U_{33} \quad 2 U_{32}$	$2 U_{31}$	${ }_{21}$
Th	66 (1)	68 (1)	65 (1) -1 (1)	13 (1)	1)
$\mathrm{P}(1)$	68 (9)	92 (4)	$62(3)-6(5)$	-3 (7)	-8(8)
$\mathrm{P}(2)$	59 (8)	79 (3)	78 (4) -3 (5)) 8 (7)	-19 (7)
	U_{1}		$U_{\text {iso }}$		iso
$\mathrm{O}(1)$	97 (5)	C(111)	79 (6)	$\mathrm{C}(211)$	99 (8)
O(2)	85 (4)	C(112)	98 (8)	$\mathrm{C}(212)$	100 (8)
$\mathrm{N}(1)$	114 (8)	C(113)	145 (13)	C(213)	134 (11)
$\mathrm{O}(11)$	135 (7)	C(114)	159 (14)	C(214)	90 (7)
$\mathrm{O}(12)$	109 (6)	C(115)	121 (10)	C(215)	78 (6)
O(13)	92 (5)	C(116)	92 (7)	C(216)	134 (11)
$\mathrm{N}(2)$	89 (6)	C(121)	66 (5)	C(221)	77 (6)
$\mathrm{O}(21)$	104 (5)	C(122)	105 (8)	C(222)	102 (8)
$\mathrm{O}(22)$	102 (5)	C(123)	106 (8)	C(223)	157 (14)
$\mathrm{O}(23)$	91 (5)	C(124)	109 (9)	C(224)	145 (13)
N(3)	99 (6)	C(125)	121 (9)	C(225)	130 (11)
$\mathrm{O}(31)$	164 (9)	C(126)	108 (8)	C(226)	101 (8)
$\mathrm{O}(32)$	108 (6)	C(131)	95 (8)	C(231)	96 (8)
$\mathrm{O}(33)$	116 (6)	C(132)	142 (12)	C(232)	162 (15)
N(4)	92 (6)	C(133)	194 (18)	C(233)	164 (15)
$\mathrm{O}(41)$	150 (8)	C(134)	168 (16)	C(234)	111 (9)
$\mathrm{O}(42)$	89 (5)	C(135)	141 (13)	C(235)	113 (9)
$\mathrm{O}(43)$	94 (5)	C(136)	145 (13)	C(236)	93 (7)

Table 3. Calculated positions of the hydrogen atoms in the phenyl rings

The H atom is given the same number as that of its parent carbon atom. Assumed C-H distance $=1.084 \AA$.

	x	y	z
H(112)	$0 \cdot 269$	0.031	$0 \cdot 191$
H(113)	0.340	-0.088	0.235
H(114)	$0 \cdot 439$	-0.086	$0 \cdot 369$
H(115)	0.486	0.038	$0 \cdot 429$
H(116)	0.412	$0 \cdot 157$	$0 \cdot 372$
H(122)	$0 \cdot 370$	0.332	$0 \cdot 261$
H(123)	0.370	0.429	$0 \cdot 367$
H(124)	0.296	0.402	$0 \cdot 450$
H(125)	$0 \cdot 196$	$0 \cdot 285$	0.516
H(126)	0.191	$0 \cdot 190$	$0 \cdot 404$
H(132)	0.482	0.216	0.230
H(133)	$0 \cdot 583$	0.252	$0 \cdot 110$
H(134)	0.495	0.256	-0.020
H(135)	0.336	0.272	-0.039
H(136)	$0 \cdot 227$	$0 \cdot 236$	0.084
H(212)	-0.242	$0 \cdot 230$	$0 \cdot 184$
H(213)	-0.318	$0 \cdot 363$	0.212
H(214)	-0.426	$0 \cdot 371$	$0 \cdot 333$
H(215)	-0.434	$0 \cdot 272$	$0 \cdot 428$
H(216)	-0.384	0.147	$0 \cdot 397$
H(222)	-0.335	-0.037	$0 \cdot 320$
H(223)	-0.293	-0.119	0.446
H(224)	-0.181	-0.067	0.544
H(225)	-0.090	0.053	$0 \cdot 526$
H(226)	-0.105	$0 \cdot 116$	$0 \cdot 393$
H(232)	-0.432	0.087	0.229
H(233)	-0.512	0.215	$0 \cdot 116$
H(234)	-0.425	-0.081	0.037
H(235)	-0.246	-0.066	0.027
H(236)	-0.160		

converged at a conventional R value of $0 \cdot 1006$. Average parameter shift/e.s.d. $=0 \cdot 01$. The positions of the thirty hydrogen atoms belonging to the six phenyl rings were calculated based on a C-H distance of $1.084 \AA$ (Tables of Interatomic Distances and Configuration in Molecules and Ions, 1958). These atoms were given temperature factors equal to their parent carbon atoms and included in the final structure factor calculations ($R=$ $0 \cdot 1009$), but no attempt was made to refine them. The atomic scattering factors for all the atoms were those given by Hanson, Herman, Lea \& Skillman (1964). The positional and thermal parameters of all the nonhydrogen atoms are given in Tables 1 and 2 respectively.* The calculated H atom positions are listed in Table 3. The computations were made with the $H R S$, LP, FOURIER, SFLS and MOLGOM programs of Birkbeck College Crystallographic Program Library on the University of London CDC 6600 computer.

[^0]
Description and discussion of the structure

The crystal structure of tetranitratobis(triphenylphosphine oxide)Th(IV) consists of discrete molecular units having the chemical formula, $\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{4}\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{PO}\right]_{2}$. The molecular structure of this compound is shown in Fig. 1. The important interatomic distances and angles with their e.s.d.'s are listed in Table 4.

Coordination of Th (IV)

The thorium atom has a coordination number of ten involving eight oxygen atoms from four bidentate nitrate groups and two oxygen atoms from two Th-O-P linkages. The variations in Th-O(nitrate) bond distances, 2.52 (2) to 2.58 (2) \AA [average distance $=2.55$ (2) \AA] are probably not significant. The Th-O (bridging) distances, $2 \cdot 37$ (2) \AA and 2.33 (2) \AA [average $=2.35$ (2) \AA] are not significantly different but undoubtedly differ from the Th-O (nitrate) distances. This accords with the general expectation that the Th-O (bridging) distances should be less than the Th-O (nitrate) distances because the oxygen atom in the Th-O-P linkage is much more tightly bound than that in a nitrate group.

Table 4. Interatomic distances and angles, uncorrected for thermal motion
E.s.d.'s are given in parentheses, $\left(\times 10^{2}\right)$ for distances and $(\times 1)$ for angles.

Bond lengths involving Th		Nitrate groups		Phenyl rings	
Th-O(1)	2.37 (2) \AA	$\mathrm{N}(1)-\mathrm{O}(11)$	1.23 (3)	$\mathrm{C}(111)-\mathrm{C}(112)$	1.33 (3) \AA
Th-O(2)	2.33 (2)	$\mathrm{N}(1)-\mathrm{O}(12)$	$1 \cdot 17$ (3)	$\mathrm{C}(112)-\mathrm{C}(113)$	$1 \cdot 33$ (4)
MeanTh-O (bridging) 2.35 (2)		$\mathrm{N}(1)-\mathrm{O}(13)$	1.34 (3)	$\mathrm{C}(113)-\mathrm{C}(114)$	1.49 (5)
		$\mathrm{N}(2)-\mathrm{O}(21)$	$1 \cdot 25$ (2)	$\mathrm{C}(114)-\mathrm{C}(115)$	$1 \cdot 38$ (4)
Th-O(12)	$2 \cdot 54$ (2)	$\mathrm{N}(2)-\mathrm{O}(22)$	$1 \cdot 17$ (3)	$\mathrm{C}(115)-\mathrm{C}(116)$	$1 \cdot 39$ (4)
$\mathrm{Th}-\mathrm{O}(13)$	2.54 (2)	$\mathrm{N}(2)-\mathrm{O}(23)$	1.35 (3)	$\mathrm{C}(116)-\mathrm{C}(111)$	$1 \cdot 37$ (3)
$\mathrm{Th}-\mathrm{O}(22)$	2.57 (2)	$\mathrm{N}(3)-\mathrm{O}(31)$	$1 \cdot 32$ (3)	$\mathrm{C}(121)-\mathrm{C}(122)$	$1 \cdot 39$ (3)
$\mathrm{Th}-\mathrm{O}(23)$	2.53 (2)	$\mathrm{N}(3)-\mathrm{O}(32)$	$1 \cdot 25$ (3)	$\mathrm{C}(122)-\mathrm{C}(123)$	$1 \cdot 38$ (4)
Th-O(32)	2.55 (2)	$\mathrm{N}(3)-\mathrm{O}(33)$	$1 \cdot 17$ (3)	$\mathrm{C}(123)-\mathrm{C}(124)$	$1 \cdot 41$ (4)
$\mathrm{Th}-\mathrm{O}(33)$	2.58 (2)	$\mathrm{N}(4)-\mathrm{O}(41)$	$1 \cdot 21$ (3)	$\mathrm{C}(124)-\mathrm{C}(125)$	$1 \cdot 41$ (4)
$\mathrm{Th}-\mathrm{O}(42)$	2.57 (2)	$\mathrm{N}(4)-\mathrm{O}(42)$	$1 \cdot 22$ (2)	$\mathrm{C}(125)-\mathrm{C}(126)$	$1 \cdot 41$ (4)
Th-O(43)	$2 \cdot 52$ (2)	$\mathrm{N}(4)-\mathrm{O}(43)$	$1 \cdot 25$ (2)	$\mathrm{C}(126)-\mathrm{C}(121)$	$1 \cdot 42$ (3)
Mean Th-O (nitrate)	2.55 (2)	Mean N-O	$1 \cdot 24$ (6)	C(131)-C(132)	1.42 (4)
				C(132)-C(133)	$1 \cdot 41$ (6)
Bond lengths involving P atoms		$\mathrm{O}(11) \cdots \mathrm{O}(12)$	$2 \cdot 18$ (3)	C(133)-C(134)	$1 \cdot 42$ (6)
$\mathrm{P}(1)-\mathrm{O}(1)$	1.43 (2) \AA	$\mathrm{O}(11) \cdots \mathrm{O}(13)$	2.09 (3)	C(134)-C(135)	$1 \cdot 25$ (5)
$\mathrm{P}(2)-\mathrm{O}(2)$	1.47 (2)	$\mathrm{O}(12) \cdots \mathrm{O}(13)$	$2 \cdot 16$ (3)	$\mathrm{C}(135)-\mathrm{C}(136)$	$1 \cdot 51$ (5)
Mean P-O	$1 \cdot 45$ (2)	$\mathrm{O}(21) \cdots \mathrm{O}(22)$	$2 \cdot 17$ (3)	$\mathrm{C}(136)-\mathrm{C}(131)$	$1 \cdot 41$ (4)
		$\mathrm{O}(21) \cdots \mathrm{O}(23)$	$2 \cdot 10$ (3)	$\mathrm{C}(211)-\mathrm{C}(212)$	$1 \cdot 31$ (3)
$\mathrm{P}(1)-\mathrm{C}(111)$	1.83 (2)	$\mathrm{O}(22) \cdots \mathrm{O}(23)$	$2 \cdot 22$ (3)	$\mathrm{C}(212)-\mathrm{C}(213)$	1.49 (4)
$\mathrm{P}(1)-\mathrm{C}(121)$	1.76 (2)	$\mathrm{O}(31) \cdots \mathrm{O}(32)$	2.15 (3)	$\mathrm{C}(213)-\mathrm{C}(214)$	1.42 (4)
$\mathrm{P}(1)-\mathrm{C}(131)$	$1 \cdot 80$ (3)	$\mathrm{O}(31) \cdots \mathrm{O}(33)$	2.14 (3)	$\mathrm{C}(214)-\mathrm{C}(215)$	1.31 (3)
$\mathrm{P}(2)-\mathrm{C}(211)$	1.81 (3)	$\mathrm{O}(32) \cdots \mathrm{O}(33)$	2.16 (3)	$\mathrm{C}(215)-\mathrm{C}(216)$	1.29 (4)
$\mathrm{P}(2)-\mathrm{C}(221)$	1.75 (2)	$\mathrm{O}(41) \cdots \mathrm{O}(42)$	2.15 (3)	$\mathrm{C}(216)-\mathrm{C}(211)$	1.53 (4)
$\mathrm{P}(2)-\mathrm{C}(231)$	1.82 (3)	$\mathrm{O}(41) \cdots \mathrm{O}(43)$	2.14 (3)	$\mathrm{C}(221)-\mathrm{C}(222)$	1.48 (3)
Mean P-C	1.80 (3) \AA	$\mathrm{O}(42) \cdots \mathrm{O}(43)$	2.09 (2)	$\mathrm{C}(222)-\mathrm{C}(223)$	1.45 (4)
		Mean $\mathrm{O} \cdots \mathrm{O}$	$2 \cdot 15$	$\mathrm{C}(223)-\mathrm{C}(224)$	$1 \cdot 38$ (5)
				$\mathrm{C}(224)-\mathrm{C}(225)$	$1 \cdot 42$ (4)
				$\mathrm{C}(225)$ - $\mathrm{C}(226)$	$1 \cdot 36$ (4)
				$\mathrm{C}(226)-\mathrm{C}(221)$	1.36 (3)
				C(231)-C(232)	$1 \cdot 33$ (5)
				C(232)-C(233)	$1 \cdot 36$ (5)
				C(233)-C(234)	$1 \cdot 47$ (5)
				C(234)-C(235)	$1 \cdot 43$ (4)
				C(235)-C(236)	1.39 (4)
				C(236)-C(231)	1.50 (4)
				Mean C-C	$1 \cdot 40$ (6)

Important bond angles	
$\mathrm{Th}-\mathrm{O}(1)-\mathrm{P}(1)$	$170.2(1.1)^{\circ}$
Th---O(1)-P(2)	$170 \cdot 2(1.0)$
$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{C}(111)$	$105 \cdot 0$ (0.4)
$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{C}(121)$	$110 \cdot 9(0 \cdot 9)$
$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{C}(131)$	108.7 (1.2)
$\mathrm{O}(2)-\mathrm{P}(2)-\mathrm{C}(211)$	112.7 (0.3)
$\mathrm{O}(2)-\mathrm{P}(2)-\mathrm{C}(221)$	112.6 (0.5)
$\mathrm{O}(2)-\mathrm{P}(2)-\mathrm{C}(231)$	$110.7(1.2)$
$\mathrm{C}(111)-\mathrm{P}(1)-\mathrm{C}(121)$	111.0 (0.7)
$\mathrm{C}(111)-\mathrm{P}(1)-\mathrm{C}(131)$	$106.9(1 \cdot 0)$
$\mathrm{C}(121)-\mathrm{P}(1)-\mathrm{C}(131)$	113.9 (1.1)
$\mathrm{C}(211)-\mathrm{P}(2)-\mathrm{C}(221)$	$107 \cdot 1$ (0.3)
$\mathrm{C}(211)-\mathrm{P}(2)-\mathrm{C}(231)$	$106 \cdot 7(1 \cdot 2)$
$\mathrm{C}(221)-\mathrm{P}(2)-\mathrm{C}(231)$	$106 \cdot 6(0 \cdot 8)$
$\mathrm{O}(1)-\mathrm{Th}-\mathrm{O}(2)$	154.8 (0.4)
$\mathrm{O}(12)-\mathrm{Th}-\mathrm{O}(13)$	$50 \cdot 3$ (0.5)
$\mathrm{O}(22)-\mathrm{Th}-\mathrm{O}(23)$	$51.7(0 \cdot 7)$
$\mathrm{O}(32)-\mathrm{Th}-\mathrm{O}(33)$	49.7 (0.6)
$\mathrm{O}(42)-\mathrm{Th}-\mathrm{O}(43)$	$48 \cdot 4$ (0.5)
$\mathrm{O}(11)-\mathrm{N}(1)-\mathrm{O}(12)$	131.1 (3.3)
$\mathrm{O}(11)-\mathrm{N}(1)-\mathrm{O}(13)$	108.6 (2.7)
$\mathrm{O}(12)-\mathrm{N}(1)-\mathrm{O}(13)$	119.3 (2.2)
$\mathrm{O}(21)-\mathrm{N}(2)-\mathrm{O}(22)$	126.9 (2.6)
$\mathrm{O}(21)-\mathrm{N}(2)-\mathrm{O}(23)$	107.4 (2.2)
$\mathrm{O}(23)-\mathrm{N}(2)-\mathrm{O}(23)$	123.7 (1.8)
$\mathrm{O}(31)-\mathrm{N}(3)-\mathrm{O}(32)$	114.6 (2.2)
$\mathrm{O}(31)-\mathrm{N}(3)-\mathrm{O}(33)$	118.8 (2.2)
$\mathrm{O}(32)-\mathrm{N}(3)-\mathrm{O}(33)$	126.6 (1.8)
$\mathrm{O}(41)-\mathrm{N}(4)-\mathrm{O}(42)$	124.4 (2.2)
$\mathrm{O}(41)-\mathrm{N}(4)-\mathrm{O}(43)$	$120 \cdot 4$ (2.1)
$\mathrm{O}(42)-\mathrm{N}(4)-\mathrm{O}(43)$	$115 \cdot 2(1 \cdot 6)$
$\mathrm{P}(1)-\mathrm{C}(111)-\mathrm{C}(112)$	121.4 (1.5)
$\mathrm{P}(1)-\mathrm{C}(111)-\mathrm{C}(116)$	113.7 (1.3)
$\mathrm{P}(1)-\mathrm{C}(121)-\mathrm{C}(122)$	119.9 (1.8)
$\mathrm{P}(1)-\mathrm{C}(121)-\mathrm{C}(126)$	120.5 (1.3)
$\mathrm{P}(1)-\mathrm{C}(131)-\mathrm{C}(132)$	119.5 (2.4)
$\mathrm{P}(1)-\mathrm{C}(131)-\mathrm{C}(136)$	$121 \cdot 1$ (2.4)
$\mathrm{P}(2)-\mathrm{C}(211)-\mathrm{C}(212)$	$110 \cdot 9$ (1.9)
$\mathrm{P}(2)-\mathrm{C}(211)-\mathrm{C}(216)$	128.9 (2-2)
$\mathrm{P}(2)-\mathrm{C}(221)-\mathrm{C}(222)$	$121 \cdot 3$ (1-9)
$\mathrm{P}(2)-\mathrm{C}(221)-\mathrm{C}(226)$	116.3 (1.9)
$\mathrm{P}(2)-\mathrm{C}(231)-\mathrm{C}(232)$	122.8 (1.9)
$\mathrm{P}(2)-\mathrm{C}(231)-\mathrm{C}(236)$	$111 \cdot 1$ (2.7)

Table 4 (cont.)

16	
- $\mathrm{C}(112)-\mathrm{C}(113)$	12
$\mathrm{C}(112)-\mathrm{C}(113)-\mathrm{C}(114)$	116.8 (2.9)
$\mathrm{C}(113)-\mathrm{C}(114)-\mathrm{C}(115)$	$119 \cdot 9$ (3.2)
$\mathrm{C}(114)-\mathrm{C}(115)-\mathrm{C}(116)$	118.9 (2.6)
$\mathrm{C}(115)-\mathrm{C}(116)-\mathrm{C}(111)$	118.0 (2.2)
$\mathrm{C}(122)-\mathrm{C}(121)-\mathrm{C}(126)$	119.5 (1.8)
(121)-C(122)-C(123)	$120 \cdot 5$ (2.5)
(122)-C(123)-C(124)	$120 \cdot 5$ (2.4)
(123)-C(124)-C(125)	$120 \cdot 1$ (2.4)
$\mathrm{C}(124)-\mathrm{C}(125)-\mathrm{C}(126)$	118.2 (2.7)
25)-C(126)-C(121)	119.5 (1.8)
(132)-C(131)-C(136)	118.6 (2.6)
(131)-C(132)-C(133)	122.9 (3.8)
C(132)-C(133)-C(134)	111.1 (4.4)
C(133)-C(134)-C(135)	132.9 (4.6)
$\mathrm{C}(134)-\mathrm{C}(135)-\mathrm{C}(136)$	114.9 (3.4)
$\mathrm{C}(135)-\mathrm{C}(136)-\mathrm{C}(131)$	$117 \cdot 8$ (3.6)
$\mathrm{C}(212)-\mathrm{C}(211)-\mathrm{C}(216)$	$120 \cdot 1$ (2.4)
$\mathrm{C}(211)-\mathrm{C}(212)-\mathrm{C}(213)$	119.4 (2.5)
212). C(213)-C(214)	114.8 (2.5)
213)-C(214)-C(215)	$123 \cdot 7$ (2.3)
214)-C(215)-C(216)	122.7 (2.2)
215)-C(216)-C(21	118.0 (2.5)
(22)-C(221)-C(226)	122.4 (1.9)
221)-C(222)-C(223)	114.7 (2.0)
222)-C(223)-C(224)	117.6 (3.4)
$\mathrm{C}(223)-\mathrm{C}(224)-\mathrm{C}(225)$	126.8 (3-2)
224)-C(225)-C(226)	114.8 (3.1)
C(225)-C(226)-C(221)	123.1 (2.1)
$\mathrm{C}(232)-\mathrm{C}(231)-\mathrm{C}(236)$	126.0 (2.6)
$\mathrm{C}(231)-\mathrm{C}(232)-\mathrm{C}(233)$	116.4 (3.3)
C(232)-C(233)-C(234)	123.0 (3.8)
C(233)-C(234)-C(235)	117.6 (2.5)
C(234)-C(235)-C(236)	119.7 (2.7)
C(235)-C(236)-C(231)	$115 \cdot 6$ (2.1)

There is a pseudo-twofold axis of symmetry passing through the thorium atom and approximately parallel to the z axis. The oxygen atoms, $\mathrm{O}(1)$ and $\mathrm{O}(2)$, which act as bridges to link the two $-\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$ groups with Th (in trans positions) lie slightly above the thorium z level. The distribution of the nitrate groups around thorium is more or less symmetrical in a band perpendicular to the $\mathrm{Th}-\mathrm{O}(2)$ bond direction.

For coordination involving oxygen atoms one normally expects about eight neighbours of the thorium atom. But higher coordination numbers of Th(IV) have been reported in some compounds. Thus in $\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{4} 5 \mathrm{H}_{2} \mathrm{O}$ Ueki, Zalkin \& Templeton (1966) found that thorium has three oxygen atoms from three water molecules and eight oxygen atoms from four nitrate ions as neighbours in a highly polar arrangement. Šćavničar and Prodić (1965) showed that in $\mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6} \cdot \mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ the thorium atom is sur-
rounded by twelve oxygen atoms from six nitrate ions. Both the above workers explained the coordination numbers of $\mathrm{Th}(\mathrm{IV})$ on the basis of the fact that the distance $(\sim 2 \cdot 1 \AA)$ between the two ox!gen atoms of a particular nitrate group bonded to Th is considerably less than the sum of their atomic radii. In the magnesium complex, the gathering of the nitrate ions around $\mathrm{Th}(\mathrm{IV})$ and water molecules around Mg (II) was attributed to the greater ionic potential of $\mathrm{Th}(\mathrm{IV})$ as compared with the ionic potential of $\mathrm{Mg}(\mathrm{II})$.

The packing of ten oxygen atoms around thorium in $\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{4}\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{PO}\right]_{2}$ may be understood by a similar reasoning. The average distance along the edges of nitrate triangles $(\mathrm{O} \cdots \mathrm{O}=2 \cdot 15 \AA)$ is less than the sum of their ionic radii, $2 \cdot 8 \AA$ (Pauling, 1960a). This gives at least a partial explanation for the occurrence of a high coordination number, ten, of $\mathrm{Th}(\mathrm{IV})$. The large cation size and vacant $5 f$ electronic configuration of

Fig. 1. $\left.\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{4}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{PO}\right]_{2}$ molecule viewed down c. For clarity H atoms are not shown.

Th(IV) are considered to be additional factors favouring a ten-coordinated structure (Muetterties, 1966).

The coordination around thorium is very difficult to describe in terms of any ideal polyhedron. If, however, one considers a nitrate group to behave as a single 'ligand site', then the coordination polyhedron may be described in terms of a slightly distorted octahcdron whose two corners (trans) are occupied by two bridging oxygen atoms and four corners by four nitrate 'sites'. Fig. 2 is drawn to show such a distorted octahedral

Fig. 2. Coordination polyhedron around Th considered as an irregular octahedron. $\mathrm{O}(1)$ and $\mathrm{O}(2)$ are two bridging oxygen atoms; L1, L2, L3 and L4 represent the effective sites of four nitrate groups. View along \mathbf{c} axis.
arrangement. For each nitrate group, the midpoint of the two oxygen atoms bonded to Th has been taken as the effective site of the ligand.

The nitrate groups

All the nitrate groups are planar within experimental error (average deviation of the atoms from the leastsquares planes $=0.017 \AA$) and as is oftei found (Addison, Logan, Wallwork \& Garner, 1971) show slight deviations from perfect $\overline{6} 2 m$ symmetry.

The N-O distances vary from $1 \cdot 17$ (3) to $1 \cdot 35(3) \AA$. The average distance $(1 \cdot 24 \AA)$ is comparable with $\mathrm{N}-\mathrm{O}$ distances found in other nitrate complexes of $\mathrm{Th}(\mathrm{IV})$ (Ueki, Zalkin \& Templeton, 1965; Taylor, Mueller \& Hitterman, 1966; Šćavničar \& Prodić, 1965). No systematic discrimination could be made between the $\mathrm{N}-\mathrm{O}$ (next to Th) and the terminal $\mathrm{N}-\mathrm{O}$ bonds. The lengths along the edges of nitrate triangles vary from 2.09 (2) to $2 \cdot 22$ (3) \AA (average $\mathrm{O} \cdots \mathrm{O}=2 \cdot 15 \AA$). Sums of the three $\mathrm{O}-\mathrm{N}-\mathrm{O}$ angles in the nitrate groups are $359 \cdot 0,357 \cdot 0,359 \cdot 0$ and $360 \cdot 0^{\circ}$.

Coordination around P atoms

Each of the two phosphorus atoms shows an irregular tetrahedral coordination. Three carbon atoms of three phenyl rings and the oxygen atom of the Th-O-P linkage occupy the four corners of the tetrahedron, the P atom sitting at the centre. The tetrahedral angles vary from 105.0 to 113.9°, the average being $109 \cdot 4^{\circ}$. The deviations from the ideal tetrahedral angles may be due to the mutual repulsion of the bulky phenyl groups.
The two P-O distances are 1.43 (2) and 1.47 (2) \AA. The average $\mathrm{P}-\mathrm{O}$ distance, 1.45 (2) \AA, is much less than the sum of the single-bond radii ($1 \cdot 76 \AA$, Pauling, $1960 b$). This shortening of the $\mathrm{P}-\mathrm{O}$ bond suggests that

Fig. 3. Stereoscopic illustration of the contents of the unit cell. The view is down \mathbf{c}, with \mathbf{a} horizontal and \mathbf{b} vertical.
some $d \pi-p \pi$ bonding may be involved owing to the tendency of the filled $p \pi$ orbitals of oxygen to overlap with empty $d \pi$ orbitals of phosphorus (Cotton \& Wilkinson, 1966).
The bond lengths between phosphorus and carbon atoms of the phenyl rings range from 1.75 (2) to 1.83 (2) \AA, the average $\mathrm{P}-\mathrm{C}$ distance being 1.80 (3) \AA. These values are close to the $\mathrm{P}-\mathrm{C}_{6} \mathrm{H}_{5}$ distances, 1.80 (1) to 1.84 (2) \AA, reported for $\mathrm{CH}_{3} \mathrm{CCo}(\mathrm{CO})_{8} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$ (Brice, Penfold, Robinson \& Taylor, 1970) and 1.83 (1) to 1.84 (1) \AA for $\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)_{2} \mathrm{Ru}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2}$ (Smith, 1972).

The phenyl $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)$ rings

In the six phenyl rings, the average $\mathrm{C}-\mathrm{C}$ bond length is $1 \cdot 40(6) \AA$ and the average C-C-C angle is $119 \cdot 8^{\circ}$. All the phenyl rings are planar within experimental error with an average deviation of the atoms from the least-squares plane $=0.039 \AA$.

The ring systems are distorted from the ideal hexagonal symmetry ($6 / \mathrm{mmm}$) of the benzene nuclei with large anomalies in some of the phenyl bond lengths and angles. This suggests considerable errors associated with a few carbon atoms which are probably due to some systematic errors in the data, inaccuracies in thorium scattering factor curve or use of limited data. The relatively small contribution by an individual carbon atom to the scattering power of the whole structure in the presence of a heavy atom like thorium makes it difficult to find the exact positions of the carbon atoms. Small errors might have also been introduced by neglecting the effect of thermal vibrations on the interatomic distances.

Molecular packing

A stereoscopic view of the packing of $\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{4}\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{PO}\right]_{2}$ molecules is shown in Fig. 3. It was found, by calculating the intermolecular contact distances, that the molecules are held together in the crystal by van der Waals forces.

We wish to acknowledge a grant from UNESCO that enabled one of us (KMAM) to stay in England during the progress of this work. We also express our deep appreciation to Dr P. F. Lindley for his keen interest and invaluable help at various stages in the
work. Thanks are also due to Dr D. S. Moss who produced the modified versions of the SFLS program written by Professor D. W. J. Cruickshank and Dr J. G. F. Smith, to Dr A. L. Mackay for kindly supplying the crystal and to Mr C. Reynolds for help with some computations.

Note added in proof: - When it was too late to make any changes in the above, our attention was drawn to the structure determination of the isostructural cerium compound by Mazhar-ul-Haque, Caughlan, Hart \& Van Nice (1971).

References

Addison, C. C., Logan, N., Wallwork, S. C. \& Gardner, C. D. (1971). Quart. Rev. 25, 289.

Brice, M. D., Penfold, B. R., Robinson, W. T. \& Taylor, S. R. (1970). Inorg. Chem. 9, 362-367.

Cotton, F.A. \& Wilkinson, G. (1966). Advanced Inorganic Chemistry, 2nd ed., p. 488. London: Interscience.
Hamilton, W. C., Rollett, J. S. \& Sparks, R. A. (1965). Acta Cryst. 18, 129.
Hanson, h. P., Herman, F., Lea, J. D. \& Skillman, S. (1964). Acta Cryst. 17, 1041-1043.

International Tables for X-ray Crystallography. (1962). Vol. III, pp. 214-215. Birmingham: Kynoch Press.
Lea, S. G. (1968). Crystallographic Studies of Compounds of the Intercalated $\mathrm{Mg}(\mathrm{OH})_{2}$ Type and of Thorium Tetranitrate Di-triphenylphosphine Oxide. Ph. D. Thesis, pp. 126-159. Univ. of London.
Mazhar-ul-Haque, Caughlan, C.n., Hart, F. A. \& Van Nice, R. (1971). Inorg. Chem. 10, 115.
Muetterties, E. C. (1966). J. Amer. Chem. Soc. 88, 305306.

Pauling, L. (1960). The Nature of Chemical Bond, 3rd ed., (a) p. 514, (b) p. 246. Ithaca: Cornell Univ. Press.

Šćavničar, S. \& Prodić, B. (1965). Acta Cryst. 18, 698702.

Smith, A. E. (1972). Inorg. Chem. 10, 2306-2310.
Smith, B. C. \& Wassef, M. A. (1968). J. Chem. Soc. (A). pp. 1817-1818.
Tables of Interatomic Distances and Configuration in Molecules and Ions (1958). Special publication No. 11, p. S16. London: The Chemical Society.
Taylor, J. C., Mueller, M. H. \& Hitterman, R. L. (1966). Acta Cryst. 20, 842-851.

Ueki, T., Zalkin, A. \& Templeton, D. H. (1966). Acta Cryst. 18, 836-841.

[^0]: * A list of structure factors has been deposited with the National Lending Library, England, as supplementary Publication No. SUP 30163 (34 pp.). Copies may be obtained through the Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England.

